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Transition to phase synchronization in coupled periodically driven chaotic pendulums
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We have studied the transition to phase synchronization in the system of two coupled periodically driven
pendulums. For the case of identical units, the coupled system has an infinite number of invariant subspaces.
The synchronization-desynchronization transition is at the blowout bifurcation which coincides with the
hyperchaos-chaos transition. On-off intermittency and intermingled basins of attraction can be observed close
to this transition. For the case of nonidentical pendulums, the synchronization-desynchronization transition
occurs far beyond the hyperchaos-chaos transition. The basin structure and the statistics of the accompanying
intermittency are different from those for identical units.
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I. INTRODUCTION

Chaos means that two trajectories starting from sligh
different initial conditions will separate exponentially wit
increasing time@1#. Recently, it has been shown that traje
tories of such chaotic systems can be synchronized if t
are properly coupled together@2#. Initially, the main interest
of almost all researchers was focused on the case of cou
identical chaotic units@2–7#. Interesting phenomena such
on-off intermittency@3#, riddled basins@4–7#, and unstable
dimension variability@8# are found near the transition to th
synchronized state. Recently, the case of coupled nonid
cal units@9–11# has attracted the attention of researchers
to the fact that parameter mismatch and stochastic pertu
tions are inevitable in real physical experiments and tech
cal applications. Among such work, Rosenblum, Pikovs
and Kurths showed the effect of phase synchronization
weakly coupled self-sustained chaotic oscillators@10#. Un-
like other types of synchronization, it is already achiev
when the coupling is extremely weak, and in some cases
no threshold.

In this paper, we study a system of two coupled chao
pendulums. The behavior of a simple pendulum w
velocity-dependent damping and periodic driving force h
merged as one of the prototype model systems comm
employed in the investigation of chaotic dynamics@13#. The
investigation derives additional motivation from the we
known isomorphism of the driven pendulum to current
ased Josephson junctions@14#. In the current study, two suc
periodically driven pendulums on the chaotic state
coupled together. The aim of this study is twofold. First, w
want to study phase synchronization in couplednonautono-
moussystems; this will serve as a complement to the stu
of phase synchronization of autonomous chaotic oscillat
Second, we want to address the issue of the synchroniza
desynchronization transition of couplednonidentical sys-
tems, in particular the statistics of the characteristic time
the intermittency accompanying this transition. It is fou
that, for a strong enough coupling, for both identical a
nonidentical units, two pendulums can achieve a synch
nized state satisfying the conditionuu12u2u,const @10#.
The transition to synchronization is accompanied by an
termittency where long periods of synchronized segments
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occasionally interrupted by short epochs of phase slipp
events. The statistics of the characteristic time of this int
mittency for coupled nonidentical units is different from th
of the on-off intermittency for coupled identical units, whi
similar to that of the eyelet intermittency accompanying t
phase synchronization of autonomous systems@10#. The pa-
per is organized as follows. In Sec. II, the coupled pendul
model studied is presented. Characteristics of
synchronization-desynchronization transition for the case
identical units are presented in Sec. III. In Sec. IV, the tra
sition for the case of nonidentical units is studied. Final
we outline the main results of the current study and disc
the relation between this transition and phase synchron
tion for autonomous systems.

II. THE MODEL OF COUPLED PENDULUMS

We use a model of two coupled chaotic pendulums w
velocity-dependent damping, harmonic forcing, and an ad
tional external constant torque. The equations describing
motion of the two pendulums are

ü11
1

b1
u̇11sinu15a1

01a1sinv1t1c sin~u22u1!, ~1!

ü21
1

b2
u̇21sinu25a2

01a2sinv2t1c sin~u12u2!, ~2!

whereu i are the angular deviations of point masses from
vertical line, ai

0 represent the strengths of the extern
torques,ai and v i are the strengths and frequencies of t
external periodic forces,c is the coupling strength, and a
variables are in dimensionless form.

III. SYNCHRONIZATION TRANSITION OF TWO
IDENTICAL CHAOTIC PENDULUMS

Here we seta15a250.78, v15v250.62, andb15b2
54.14. In this case of two identical pendulums coupled
gether, the system has a number of infinite invariant s
spacesuu12u2u52np wheren is an integral. With variation
of the coupling strength, the transverse stabilities of attr
tors on these invariant subspaces change correspond
©2001 The American Physical Society13-1
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@4#. Near the point of the bifurcation from the transverse
stable state to the transversely unstable one, called the b
out bifurcation@6#, interesting phenomena such as on-off
termittency @3#, ~globally or locally! riddled basins@4–7#,
and unstable dimension variability@8# can be observed.

In Fig. 1, we plot the Lyapunov exponents~LEs! of the
coupled system with respect to the coupling strengthc. For
0.09,c,0.176 and c.4.18, there is only one positiv
Lyapunov exponent in the coupled system. This means
the motions of the two pendulums are totally synchronized
these regimes.

In Fig. 2, the basin of attraction for one of the invaria
statesu15u2 is shown. Here the coupling strength isc
50.175 in the synchronous regime. An ensemble of 3
3300 points in the region 0,u1,2p,0,u2,2p with u̇1

50 andu̇250 is used to construct the plot. If a point lea
to the stateu15u2 after a transient of 10 000 time steps, it
left blank. Otherwise, it is denoted by a black dot. It can
seen that black dots and the blank set are interwoven
gether in a very complex way, and black dots penetrate
invariant subspaceu15u2 in a dense set of points. We sa
the basin of attraction for the attractor on the invariant s
spaceu15u2 is riddled by those of other attractors. Actuall

FIG. 1. Variation of LEs of coupled identical pendulums wi
respect to the coupling strengthc. Zero points of the second large
LE are atc50.09, 0.176, and 0.418.

FIG. 2. The intermingled basin of the attractoru15u2 with c
50.175.
02621
w-
-

at
n

0

e
o-
e

-

the basin of any one of the infinite number of synchrono
states is riddled by those of others. This extreme kind
riddled basin is called an intermingled one in the origin
paper of Alexanderet al. @4#. Here we have intermingled
basins among an infinite number of attractors.

Outside the synchronous regime, the invariant subspac
no longer transversely stable. A typical trajectory stays fo
long period of time near one of the invariant subspaces
occasionally escapes from it and switches to the vicinities
other invariant subspaces. The wandering of the trajec
among the infinite number of invariant subspaces gives
intermittent evolution of the phase difference between t
pendulums. The phase differenceu12u2 for some cases o
coupling is shown in Fig. 3. Here the on-off intermittency
of the form of switching among an infinite number of invar
ant states. In other words, it has an infinite number of ‘‘of
state in contrast to the conventional case where there is
one ‘‘off’’ state @3#. The distribution of the duration of the
laminar phase, which is defined as the time duration betw
two phase slips, is of the universal form for on-off interm
tency @3# p(t); l 21.5 exp(2t/t* ). Variation of the mean
length of the laminar phase with the coupling strengthc is of
the form ^t&;(c2ccr)

21.

FIG. 4. Variation of LEs of two coupled nonidentical pend
lums with respect to the coupling strengthc. Zero points of the
second LE are atc50.102, 0.177, and 0.418.

FIG. 3. The temporal evolution of the phase difference betw
two pendulums.
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IV. SYNCHRONIZATION TRANSITION OF TWO
NONIDENTICAL CHAOTIC PENDULUMS

Here we use the parameter settinga15a250.78, v1
5v250.62, b154.14, andb254.10, i.e., with a difference
in damping coefficients of the two pendulums. Without co
pling, both pendulums are in chaotic states. With increas
coupling strengthc, one of the two positive Lyapunov expo
nents becomes negative~see Fig. 4!. For the case of two
coupled identical pendulums, this hyperchaos-chaos tra
tion coincides with the synchronization-desynchronizat
transition. About the transition, as was shown above, on
side, on-off intermittency can be observed; on the other s
a riddled basin appears. What will happen in the system
coupled nonidentical pendulums?

From numerical simulations, we found that, even beyo
the hyperchaos-chaos transition, one can still observe p
slipping in the temporal evolution of the phase differen
u12u2 ~see Fig. 5!. Long periods of nearly phase locke
states are occasionally interrupted by short epochs of q
phase slipping. Unlike the on-off intermittency in the hype
chaotic state with two positive LEs, here the intermitte
state has only one positive LE. With further increase in
coupling strength, phase slipping events become rarer
rarer, and as the coupling strength is increased beyon
certain threshold the two pendulums reach the phase loc
state satisfying the conditionuu12u222npu,const.

Attractors and their basins of attraction are shown in F

FIG. 5. The temporal evolution of the phase differenceu12u2.
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6. As the system is in the phase synchronized regime, it
an infinite number of attractors satisfyinguu12u222npu
,const. Unlike the case of identical pendulums coupled
gether, where the basins of attraction of these attractors
intermingled, here the basins of attraction are not riddl
These attractors and their basins are well separated. As
be seen in Fig. 6~a!, one can find an open set to contain t
attractor. With decreasing coupling strength, the ba
boundary comes closer to the attractor at some points. W
they coalesce, some ‘‘channels’’ appear at these points.
provides the possibility of phase slips during which the ph
changes by62np. Now the trajectory wanders among the
former attractors and all of these attractors merge into a la
one. It has been shown@7# that, in systems possessing a
invariant subspace, the basin of attraction for a chaotic
tractor in this subspace may be riddled if certain perio
orbits embedded in this chaotic attractor are transversely
stable while the whole chaotic attractor is transversely sta
on average. In general, periodic orbits lose their transve
stability through the pitchfork bifurcation@4,7#. In the case
of two nonidentical pendulums coupled together, there is
invariant subspace. The pitchfork bifurcation is rendered
perfect~a saddle-node bifurcation! @11#. It is conjectured that
it is just this saddle-node bifurcation that opens the chan
among basins of equivalent attractors. Due to the ergodi
of the chaotic state, once a channel is opened, a trajec
starting anywhere in the phase plane can go through
channel to other ‘‘attractors.’’ This leads to phase s
events. So the phase synchronization-desynchronization
sition of two coupled nonidentical systems should cor
spond to the riddling bifurcation in the case of coupled ide
tical systems. The bubbling bifurcation is far away from t
hyperchaos-chaos transition. Thus phase slips can be
served in the deep region of the chaotic state in contras
the fact that on-off intermittency is only in the hypercha
regime. This difference also has a dramatic influence on
scaling of the characteristic time of the intermittency near
transition.

In Fig. 7, the distribution of the duration of phase lock
segments is presented both in semilogarithmic and log
plots. It has a power law distribution with an exponent
decay on the long duration side. Numerical fitting of da
gives the exponent of the power law as21.55. This is simi-
lar to that for the on-off intermittency of coupled identic
pendulums. It is expected that, as the coupling is tuned a
-
FIG. 6. Basin of attraction for coupled non
identical pendulums with~a! c50.55 in the phase
synchronization regime and~b! c50.47 in the
phase desynchronization regime. In~a!, only the
attractor atu1'u2 is plotted. In~b!, points that
go first to the vicinity ofu15u2 are left blank.
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from the hyperchaos-chaos transition point, the region of
power law distribution will become smaller and finally di
appear.

The variation of the mean length of phase locked s
ments with respect to the coupling strengthc is plotted in
Fig. 8~a!. Numerical fitting shows that it is of the form
ln^t&;(c2ccr)

20.5. The average number of phase slip eve
during a period of 106 time-steps is shown in Fig. 8~b!. It
behaves like ln̂N&;(c2ccr)

20.5. This very long mean char
acteristic time, or, in other words, the very rare appeara
of phase slips, is typical for intermittency near the attract
repeller collision transition@12#. It makes the transition to
synchronization for coupled nonidentical systems differ
from the blowout type of bifurcation for two coupled ident
cal systems.

In the case studied above, the parameter mismatch
tween two pendulums has significant influence on the pr
erties of the transition to synchronization. However, from
point of view of the phase dynamics, the mean frequenc
~or mean angular velocities! for the two pendulums used ar

FIG. 7. Distribution of the duration of phase locked segme
for the intermittency withc50.4. 23105 such segments are used
construct this statistic.

FIG. 8. ~a! The mean characteristic time^t& of the intermittency
and ~b! the average number of phase slips vs the deviation of c
pling strength from its critical value.
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both zero, i.e., the same, irrespective of the parameter m
match. So the synchronization of phase variablesu i shown
above is only in the sense ofphase lockingbut notfrequency
entrainment@10#. Below, we will study the frequency en
trainment of two chaotic pendulums with different ‘‘freque
cies,’’ or different mean angular velocities^u̇&. In the lan-
guage of Josephson junctions, the synchronization of
such pendulums means that, with certain suitable coupl
two different Josephson junctions with different inputs c
have the same dc output. To achieve the goal of this stu
we use two pendulums with different external consta
torques. The parameter setting used in numerical calculat
is a1

050.3, a2
050.1, a15a250.78, b15b256.7, and v1

5v250.62.
Lyapunov exponents for such a coupled oscillator syst

are shown in Fig. 9. With increasing coupling strength, t
second largest Lyapunov exponent becomes negative
about c50.6. This is the hyperchaos-chaos transition. T
variation of the average angular velocity^u̇ i& with respect to
the coupling strengthc is shown in the lower frame of the
same figure. From the plot, the difference between the an
lar velocities of the two oscillators can be seen until t
coupling is about c50.68, which is far beyond the
hyperchaos-chaos transition. There is also a change in
LEs at this point: Below this point, the second largest L
decreases almost monotonically; beyond this point, it os
lates about a certain constant value and no fast decreas
increase happens. In our numerical calculations, it is fou
that frequency synchronization (^u̇1&5^u̇2&) and phase syn-
chronization (uu12u2u,const) are both achieved beyond th
hyperchaos-chaos transition. It seems also that the two
chronizations are achieved at different coupling streng
i.e., the frequency synchronization~at about c50.68) is
achieved prior to the phase synchronization. The temp
evolution of the phase difference withc50.7 is shown in
Fig. 10 where phase slipping events can still be seen.
determine whether the two synchronizations are rea
achieved at different times or simultaneously as in the c
of coupled autonomous chaotic oscillators@10# still needs
further numerical calculations.

s

u-

FIG. 9. Lyapunov exponents and average angular velocities
coupled pendulums with different constant external torques.
3-4



ze
ro

th

r
ca

a
s
w
at
ed
yn
r
o
fa

nsi-
the
he
n-

s,
is
n

iden-
le-
de

be-
ller.

ts,
fter
dic

il
es
an-

au-
ed at

otic
se
otic

or
ice
. He
x-
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We also studied the basin structure of the synchroni
state and the statistic of the intermittency in the desynch
nization regime. We obtained similar results to those for
case with different damping coefficients.

V. DISCUSSION

In this paper, we studied the transition to phase synch
nization for systems of coupled identical and nonidenti
chaotic oscillators with external driving.

For two coupled identical pendulums, the system has
infinite number of invariant subspaces. The pha
synchronization-desynchronization transition is at the blo
out bifurcation. In the synchronization regime, basins of
traction of the infinite number of attractors are intermingl
with each other. Slightly beyond the transition, in the des
chronization regime, on-off intermittency in the phase diffe
ence between two oscillators can be observed. For two n
identical pendulums, the transition to synchronization is

FIG. 10. The temporal evolution of the phase differenceu1

2u2 with c50.7.
r-

ni
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beyond the hyperchaos-chaos transition. Below the tra
tion, in the synchronization regime, basin boundaries for
infinite number of attractors are far away from attractors. T
intermittency in the phase difference for the slightly desy
chronized state has a very long characteristic time.

From the point of view of bifurcation of strange attractor
the transition to synchronization for coupled identical units
a pitchfork’’ bifurcation of the strange chaotic attractor o
the synchronous subspace. For the case of coupled non
tical units, the pitchfork bifurcation is smeared into a sadd
node bifurcation. Due to the ergodicity, after the saddle-no
bifurcation~actually a saddle-repeller bifurcation@12#! of the
least stable periodic orbit, the strange chaotic attractor
comes unstable and expands its size to include the repe
This is different from the case for coupled identical uni
where, due to the singularity of the invariant subspace, a
the loss of transverse stability of the least stable perio
orbit, there is only a change in the basin of attraction~from
normal to riddled! while the attractor itself is untouched unt
the blowout bifurcation. It is just this difference that mak
the statistics for intermittencies accompanying the two tr
sitions different.

Compared with the phase synchronization for coupled
tonomous systems, the synchronized state here is reach
a much larger coupling strength. For the case of the Ro¨ssler
system, the phase synchronized system is in a hypercha
state with two positive Lyapunov exponents. For the ca
studied here, the synchronized state is always in the cha
regime with only one positive Lyapunov exponent.

ACKNOWLEDGMENTS

The author is extremely grateful to A. S. Pikovsky f
initially suggesting this problem, and for his astute adv
and patient guidance during the course of the research
also wants to acknowledge financial support from the Ale
ander von Humboldt Foundation.
r-

tt.
.

.

pl.
@1# E. Ott, Chaos in Dynamical Systems~Cambridge University
Press, Cambridge, 1993!.

@2# H. Fujisaka and T. Yamada, Prog. Theor. Phys.69, 32 ~1983!;
A.S. Pikovsky, Z. Phys. B: Condens. Matter55, 149 ~1984!;
L.M. Pecora and T.L. Carroll, Phys. Rev. Lett.64, 821~1990!.

@3# N. Platt, E.A. Spiegel, and C. Tresser, Phys. Rev. Lett.70, 279
~1993!.

@4# A.S. Pikovsky and P. Grassberger, J. Phys. A24, 4587~1991!;
J.C. Alexander, J.A. Yorke, Z. You, and I. Kan, Int. J. Bifu
cation Chaos Appl. Sci. Eng.2, 795 ~1992!; P. Ashwin, J.
Buescu, and I. Stewart, Phys. Lett. A193, 126 ~1994!.

@5# S.C. Venkataramani, B.R. Hunt, and E. Ott, Phys. Rev. E54,
1346 ~1996!.

@6# E. Ott and J.C. Sommerer, Phys. Lett. A188, 39 ~1994!.
@7# Y.C. Lai, C. Grebogi, J.A. Yorke, and S.C. Venkatarama

Phys. Rev. Lett.77, 55 ~1996!.
@8# Y.C. Lai and C. Grebogi, Phys. Rev. Lett.82, 4803~1999!.
,

@9# N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, and H.D.I. Aba
banel, Phys. Rev. E51, 980 ~1995!; U. Parlitz, L. Junge, W.
Lauterborn, and L. Kocarev,ibid. 54, 2115~1996!.

@10# M. Rosenblum, A. Pikovsky, and J. Kurths, Phys. Rev. Le
76, 1804~1996!; A. Pikovsky, G. Osipov, M. Rosenblum, M
Zaks, and J. Kurths,ibid. 79, 47 ~1997!.

@11# V. Astakhov, M. Hasler, T. Kapitaniak, A. Shabunin, and V
Anishchenko, Phys. Rev. E58, 5620~1998!; E. Barreto, P. So,
B.J. Gluckman, and S.J. Schiff, Phys. Rev. Lett.84, 1689
~2000!; R.L. Viana and C. Grebogi, Phys. Rev. E62, 462
~2000!.

@12# C. Grebogi, E. Ott, and J.A. Yorke, Phys. Rev. Lett.50, 935
~1983!; Ergod. Theory Dynam. Syst.5, 341 ~1985!.

@13# G.L. Baker, and J.P. Gollub,Chaotic Dynamics: An Introduc-
tion ~Cambridge University Press, New York, 1990!.

@14# B.A. Huberman, J.P. Crutchfield, and N.H. Packard, Ap
Phys. Lett.37, 750 ~1982!.
3-5


