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Transition to phase synchronization in coupled periodically driven chaotic pendulums
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We have studied the transition to phase synchronization in the system of two coupled periodically driven
pendulums. For the case of identical units, the coupled system has an infinite number of invariant subspaces.
The synchronization-desynchronization transition is at the blowout bifurcation which coincides with the
hyperchaos-chaos transition. On-off intermittency and intermingled basins of attraction can be observed close
to this transition. For the case of nonidentical pendulums, the synchronization-desynchronization transition
occurs far beyond the hyperchaos-chaos transition. The basin structure and the statistics of the accompanying
intermittency are different from those for identical units.
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[. INTRODUCTION occasionally interrupted by short epochs of phase slipping
events. The statistics of the characteristic time of this inter-
Chaos means that two trajectories starting from slightlymittency for coupled nonidentical units is different from that
different initial conditions will separate exponentially with of the on-off intermittency for coupled identical units, while
increasing timg 1]. Recently, it has been shown that trajec- Similar to that of the eyelet intermittency accompanying the
tories of such chaotic systems can be synchronized if thephase synchronization of autonomous systgh@§. The pa-
are properly coupled togethE2]. Initially, the main interest ~Per is organized as follows. In Sec. II, the coupled pendulum
of almost all researchers was focused on the case of couplégodel studied is presented. Characteristics of the
identical chaotic unit§2—7]. Interesting phenomena such as synchronization-desynchronization transition for the case of
on-off intermittency[3], riddled basing4—7], and unstable identical units are presented in Sec. lll. In Sec. IV, the tran-
dimension variability8] are found near the transition to the sition for the case of nonidentical units is studied. Finally,
synchronized state. Recently, the case of coupled nonidentive outline the main results of the current study and discuss
cal units[9-11] has attracted the attention of researchers dughe relation between this transition and phase synchroniza-
to the fact that parameter mismatch and stochastic perturb&0n for autonomous systems.
tions are inevitable in real physical experiments and techni-
cal applications. Among such work, Rosenblum, Pikovsky, Il. THE MODEL OF COUPLED PENDULUMS
and Kurths showed the effect of phase synchronization of

weakly coupled self-sustained chaotic oscillatfts]. Un- We use a model of two coupled chaotic pendulums with
like other types of synchronization, it is already achieved-€loCity-dependent damping, harmonic forcing, and an addi-

when the coupling is extremely weak, and in some cases h gongl external constant torque. The equations describing the
no threshold. motion of the two pendulums are

In this paper, we study a system of two coupled chaotic
pendulums. The behavior of a simple pendulum with 6, + b_;91+ sing;=a%+a;sinw t+csin(6,— 6;), (1)
velocity-dependent damping and periodic driving force has 1
merged as one of the prototype model systems commonly
employed in the investigation of chaotic dynam(i¢8]. The
investigation derives additional motivation from the well
known isomorphism of the driven pendulum to current bi-
ased Josephson junctiofist]. In the current study, two such where6; are the angular deviations of point masses from the
periodically driven pendulums on the chaotic state arevertical line, a° represent the strengths of the external
coupled together. The aim of this study is twofold. First, wetorques,a; and w; are the strengths and frequencies of the
want to study phase synchronization in couptemhautono-  external periodic forces; is the coupling strength, and all
moussystems; this will serve as a complement to the studwariables are in dimensionless form.
of phase synchronization of autonomous chaotic oscillators.
Second, we want to addr_e_ss the issue of th_e syn_chronization- lIl. SYNCHRONIZATION TRANSITION OF TWO
desync_:hrongaﬂon transmpn_ of coupleubmdent_lcgl sys- IDENTICAL CHAOTIC PENDULUMS
tems, in particular the statistics of the characteristic time for
the intermittency accompanying this transition. It is found Here we seta;=a,=0.78, w;=w,=0.62, andb,;=b,
that, for a strong enough coupling, for both identical and=4.14. In this case of two identical pendulums coupled to-
nonidentical units, two pendulums can achieve a synchrogether, the system has a number of infinite invariant sub-
nized state satisfying the conditiof®, — 6, <const [10]. space$,— 6,|=2nm wheren is an integral. With variation
The transition to synchronization is accompanied by an inof the coupling strength, the transverse stabilities of attrac-
termittency where long periods of synchronized segments aners on these invariant subspaces change correspondingly

. 1.
b2+ p-0p+sin 0= ad+a,sinw,t+csin(f,— 6,), (2)
2

1063-651X/2001/6@)/0262135)/$15.00 63026213-1 ©2001 The American Physical Society



H. L. YANG PHYSICAL REVIEW E 63 026213

0.002 : . . . 20 : : : :
10 | ¢=0.09
0
0.000 _10 : . . .
5
< o OF
P 51 c=0178
-0.002 1 @ -10
-15
20
10  c=0416 1
-0.004 : : : .
00 01 02 03 04 05 0
C _10 ' L L .
FIG. 1. Variation of LEs of coupled identical pendulums with 0 2000 4000 6000 8000 10000
respect to the coupling strengthZero points of the second largest t
LE are atc=0.09, 0.176, and 0.418. FIG. 3. The temporal evolution of the phase difference between

two pendulums.

[4]. Near the point of the bifurcation from the transversely ) o

stable state to the transversely unstable one, called the blof?€ basin of any one of the infinite number of synchronous
out bifurcation[6], interesting phenomena such as on-off in-States is riddled by those of others. This extreme kind of
termittency[3], (globally or locally riddled basing4—7], riddled basin is called an intermingled one in the original

and unstable dimension variabilif] can be observed. paper of Alexandeet al. [4]. Here we have intermingled
In Fig. 1, we plot the Lyapunov exponentsEs) of the basins among an infinite numbgr of attractors. _
coupled system with respect to the coupling strergtfor Outside the synchronous regime, the invariant subspace is

0.09<c<0.176 andc>4.18, there is only one positive MO longer transversely stable. A typical trajectory stays for a

Lyapunov exponent in the coupled system. This means thdapng period of time near one of the invariant subspaces and

the motions of the two pendulums are totally synchronized irpccasi_onall_y escapes from it and switches to the vicini_ties of
these regimes. other invariant subspaces. The wandering of the trajectory

In Fig. 2, the basin of attraction for one of the invariant @M0ng the infinite number of invariant subspaces gives the
states 6,= 6, is shown. Here the coupling strength s intermittent evolution of the phase difference between two

=0.175 in the synchronous regime. An ensemble of 30(pendlulums. :;he phase differenég; 02 forf?ome cases of
Lo . L coupling is shown in Fig. 3. Here the on-off intermittency is
> 300 points in the region €6, <2,0<§,<2 with 6, of the form of switching among an infinite number of invari-

=0 and6,=0 is used to construct the plot. If a point leads gnt states. In other words, it has an infinite number of “off”
to the state; = 6, after a transient of 10000 time steps, it is state in contrast to the conventional case where there is only
left blank. Otherwise, it is denoted by a black _dot. It can begne “off’ state [3]. The distribution of the duration of the
seen that black dots and the blank set are interwoven tQaminar phase, which is defined as the time duration between
gether in a very complex way, and black dots penetrate thgyo phase slips, is of the universal form for on-off intermit-
invariant subspacé;= 6, in a dense set of points. We say tency [3] p(7)~1"1°exp(~1/z,). Variation of the mean

the basin of attraction for the attractor on the invariant subiength of the laminar phase with the coupling strengts of
spacet; = 6, is riddled by those of other attractors. Actually, the form(7)~(c—cg,) .
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FIG. 4. Variation of LEs of two coupled nonidentical pendu-
FIG. 2. The intermingled basin of the attract®y= 6, with c lums with respect to the coupling strength Zero points of the
=0.175. second LE are at=0.102, 0.177, and 0.418.
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6. As the system is in the phase synchronized regime, it has

= 0 % an infinite number of attractors satisfying,— 0,—2n|
q|>” _;(5)8 <const. Unlike the case of identical pendulums coupled to-

‘ , ) , gether, where the basins of attraction of these attractors are
intermingled, here the basins of attraction are not riddled.

=043 ' ' These attractors and their basins are well separated. As can
°|>N 0F 1 be seen in Fig. &), one can find an open set to contain the
s I 1 attractor. With decreasing coupling strength, the basin

-10 : : : : boundary comes closer to the attractor at some points. When

. . . . they coalesce, some “channels” appear at these points. This

~ 005 | =05 ] provides the possibility of phase slips during which the phase
qli 0.00 L , changes by+2n. Now the trajectory wanders among these

@ o former attractors and all of these attractors merge into a large
005 T 000 20000 60000 80000 100000 one. It has been showj¥] that, in systems possessing an

t invariant subspace, the basin of attraction for a chaotic at-

FIG. 5. The temporal evolution of the phase differege- 6,.  tractor in this subspace may be riddled if certain periodic
orbits embedded in this chaotic attractor are transversely un-
IV. SYNCHRONIZATION TRANSITION OF TWO stable while the whole chaotic attractor is transversely stable
NONIDENTICAL CHAOTIC PENDULUMS on average. In general, periodic orbits lose their transverse
stability through the pitchfork bifurcatiopd,7]. In the case
Here we use the parameter setting=a,=0.78, w;  of two nonidentical pendulums coupled together, there is no
=w,=0.62,b;=4.14, andb,=4.10, i.e., with a difference invariant subspace. The pitchfork bifurcation is rendered im-
in damping coefficients of the two pendulums. Without cou-perfect(a saddle-node bifurcatiofll]. It is conjectured that
pling, both pendulums are in chaotic states. With increasingt is just this saddle-node bifurcation that opens the channel
coupling strengtlt, one of the two positive Lyapunov expo- among basins of equivalent attractors. Due to the ergodicity
nents becomes negatisee Fig. 4 For the case of two of the chaotic state, once a channel is opened, a trajectory
coupled identical pendulums, this hyperchaos-chaos transstarting anywhere in the phase plane can go through this
tion coincides with the synchronization-desynchronizationchannel to other *“attractors.” This leads to phase slip
transition. About the transition, as was shown above, on onevents. So the phase synchronization-desynchronization tran-
side, on-off intermittency can be observed; on the other sidesition of two coupled nonidentical systems should corre-
a riddled basin appears. What will happen in the system o$pond to the riddling bifurcation in the case of coupled iden-
coupled nonidentical pendulums? tical systems. The bubbling bifurcation is far away from the
From numerical simulations, we found that, even beyonchyperchaos-chaos transition. Thus phase slips can be ob-
the hyperchaos-chaos transition, one can still observe phaserved in the deep region of the chaotic state in contrast to
slipping in the temporal evolution of the phase differencethe fact that on-off intermittency is only in the hyperchaos
0,— 6, (see Fig. 5. Long periods of nearly phase locked regime. This difference also has a dramatic influence on the
states are occasionally interrupted by short epochs of quickcaling of the characteristic time of the intermittency near the
phase slipping. Unlike the on-off intermittency in the hyper-transition.
chaotic state with two positive LEs, here the intermittent In Fig. 7, the distribution of the duration of phase locked
state has only one positive LE. With further increase in thesegments is presented both in semilogarithmic and log-log
coupling strength, phase slipping events become rarer arglots. It has a power law distribution with an exponential
rarer, and as the coupling strength is increased beyond decay on the long duration side. Numerical fitting of data
certain threshold the two pendulums reach the phase lockaglves the exponent of the power law a4.55. This is simi-
state satisfying the conditig; — #,— 2nm| <const. lar to that for the on-off intermittency of coupled identical
Attractors and their basins of attraction are shown in Figpendulums. It is expected that, as the coupling is tuned away

(@
FIG. 6. Basin of attraction for coupled non-
E identical pendulums witka) c=0.55 in the phase
2%0'5 synchronization regime an¢tb) ¢c=0.47 in the
B / phase desynchronization regime. (&), only the
4 attractor atd,~ 6, is plotted. In(b), points that
go first to the vicinity ofg,= 6, are left blank.
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T FIG. 9. Lyapunov exponents and average angular velocities for
FIG. 7. Distribution of the duration of phase locked segmentscoupled pendulums with different constant external torques.
for the intermittency witlc=0.4. 2x 10° such segments are used to
construct this statistic. both zero, i.e., the same, irrespective of the parameter mis-
match. So the synchronization of phase varialdeshown
Gbove is only in the sense phase lockindut notfrequency

L
1
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from the hyperchaos-chaos transition point, the region of th

power law distribution will become smaller and finally dis- entrainment10]. Below, we will study the frequency en-

appear. - : A “ )
The variation of the mean length of phase locked Seg:[r-amment of two chaotic pendulums with different “frequen

ments with respect to the coupling strengtlis plotted in ~ ¢ieS,” or different mean angular velocitigs). In the lan-

Fig. 8a). Numerical fiting shows that it is of the form 9uage of Josephson junctions, the synchronization of two
In(7)~(c—cy) *% The average number of phase slip eventsSuch pendulums means 'Fhat, _Wlth certain swtabl_e coupling,
during a period of 10 time-steps is shown in Fig.(8). It two different Josephson junctions with different inputs can
behaves like |(N>~(C—Ccr)_o'5- This very long mean char- have the same dc output. To achieve the goal of this study,

acteristic time, or, in other words, the very rare appearanc®® US€ two pendulums with different external constant
of phase slips, is typical for intermittency near the attractor-ftorqges' The (;))arameter setting used in numerical calculations
repeller collision transitiof12]. It makes the transition to 1S 81=0.3, &=0.1, 8,=a,=0.78, b;=b,=6.7, and w,
synchronization for coupled nonidentical systems different™ w,=0.62. )
from the blowout type of bifurcation for two coupled identi-  Lyapunov exponents for such a coupled oscillator system
cal systems. are shown in Fig. 9. With increasing coupling strength, the
In"the case studied above, the parameter mismatch b&é€cond largest Lyapunov exponent becomes negative at
tween two pendulums has significant influence on the prop@doutc=0.6. This is the hyperchaos-chaos transition. The
erties of the transition to synchronization. However, from thevariation of the average angular veloc{tg;) with respect to
point of view of the phase dynamics, the mean frequenciethe coupling strengtle is shown in the lower frame of the
(or mean angular velocitig¢$or the two pendulums used are same figure. From the plot, the difference between the angu-
lar velocities of the two oscillators can be seen until the

15.0 @ . ‘ coupling is aboutc=0.68, which is far beyond the
140 t d hyperchaos-chaos transition. There is also a change in the
8 3o} LEs at this point: Below this point, the second largest LE
¥ 120 | decreases almost monotonically; beyond this point, it oscil-
1ol lates about a certain constant value and no fast decrease or
100 increase happens. In our numerical calculations, it is found
70 that fr_eqqency synchronizatiof 4;) = 6,)) gnd phase syn-
60 | ® chronization (0, — 6, <const) are both achieved beyond the
’ hyperchaos-chaos transition. It seems also that the two syn-
= 50 1 . R . . R
S chronizations are achieved at different coupling strengths,
407 ) i.e., the frequency synchronizatiofat aboutc=0.68) is
30 R ] achieved prior to the phase synchronization. The temporal
2~(1"010 1020 1.030. 1040 1050 eyolution of the phase (_Jliff_erence witt=0.7 i_s shown in
lc—c |03 Fig. 10 where phase slipping events can still be seen. To
cr

determine whether the two synchronizations are really
FIG. 8. (a) The mean characteristic tinfe) of the intermittency ~ achieved at different times or simultaneously as in the case
and (b) the average number of phase slips vs the deviation of couof coupled autonomous chaotic oscillatdd] still needs
pling strength from its critical value. further numerical calculations.
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1000 - - ' ' beyond the hyperchaos-chaos transition. Below the transi-
0 =03 1 tion, in the synchronization regime, basin boundaries for the
~1000 \ infinite number of attractors are far away from attractors. The
intermittency in the phase difference for the slightly desyn-
~2000 : : : ' chronized state has a very long characteristic time.
3 ] From the point of view of bifurcation of strange attractors,
> | c=0.7 | the transition to synchronization for coupled identical units is
q'>~ 4l 1 a pitchfork” bifurcation of the strange chaotic attractor on
-6 . . . . the synchronous subspace. For the case of coupled noniden-
, tical units, the pitchfork bifurcation is smeared into a saddle-
0.04 | ee13 ] node bifurcation. Due to the ergodicity, after the saddle-node
' bifurcation(actually a saddle-repeller bifurcatiph2]) of the

0.00 Ww least stable periodic orbit, the strange chaotic attractor be-
-0.04 , comes unstable and expands its size to include the repeller.
0 50000 100000 This is different from the case for coupled identical units,
t i ) where, due to the singularity of the invariant subspace, after
FIG. 10. The temporal evolution of the phase differeriie o 555 of transverse stability of the least stable periodic
02 with ¢=0.7. orbit, there is only a change in the basin of attractifsom
ﬁjormal to riddled while the attractor itself is untouched until
L . . . e blowout bifurcation. It is just this difference that makes
state and th_e statistic of Fhe Intermittency in the desynchrot-he statistics for intermittencijes accompanying the two tran-
nization regime. We obta_lned S|m_|lar results to those for thesitions different.
case with different damping coefficients. Compared with the phase synchronization for coupled au-
tonomous systems, the synchronized state here is reached at
V. DISCUSSION a much larger coupling strength. For the case of thesRo
system, the phase synchronized system is in a hyperchaotic

In this paper, we studied the transition to phase SynChrOétate with two positive Lyapunov exponents. For the case

nizati(_)n for_ systems: of coupled i_dentical and nonidenticalstudied here, the synchronized state is always in the chaotic
chaotic oscillators W.'th e>_<terna| driving. regime with only one positive Lyapunov exponent.

For two coupled identical pendulums, the system has an
infinite number of invariant subspaces. The phase
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